

Dynamics of volumetrically heated matter passing through the liquid-vapor metastable states

 $\Delta p_{1\rightarrow 2} > 0$

(follows from $\Delta T_{1\rightarrow 2} > 0$)

5 / 15

For $p_1=p_0=0.5$ kbar: $T_2\approx T_1+40$ K, $p_2\approx 1.6$ kbar $\approx 3p_1$

 $\Delta T_{1\rightarrow 2} > 0$

(can be rigorously proven)

High Energy Density Physics 8 (2012) 349–359 | arXiv:1205.2579

Steffen Faik¹, Mikhail M. Basko^{2,3}, Anna Tauschwitz^{1,2}, Igor Iosilevskiy^{2,4,5}, Joachim A. Maruhn^{1,2}

12 / 15

13 / 15

14 / 15

15 / 15

• Full implementation in RALEF-2D needs to be considered.

FAIR can be performed with the proposed method.

exploding wire cores.

Adequate simulations of WDM experiments at HHT area and

Persistent foamlike liquid-vapor structures were observed in

(1) ITP, Goethe-Universität, Frankfurt (2) EMMI, GSI, Darmstadt (3) ITEP, Moscow (4) JIHT-RAS, Moscow (5) MIPT, Moscow region

Molecule population: $NV_c = 219$

10 / 15

 \rightarrow The theory is applicable!

p=0.5 kbar, $q=10^{11}$ J/gs

Timescale for a one-order change of the effective boiling rate

 $\Delta t \simeq \frac{c_p \Delta T_{10}}{\sigma} \simeq \frac{\Delta T_{10}}{T} \tau_q \simeq \frac{\tau_q}{200} < 1 \text{ ns } \Rightarrow \text{ Instantaneous transition!}$